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be deformed accordingly. The pole on the real axis contributes half the e hel"'nu..
below contributes a full residuum. For the positive pole the path needs no G ;{m while g

a small correction to p. The integral of the first term in Eq. ( 10.30) is the

density, ny. The integral over the second term vanishes because the plasma is g

(v) = 0. The integral over the third term is noksT, /2m,. Keeping only these three
terms and dropping the small contribution of the pole, the real part, €,(@,k), of he
dispersion relation (@, k) takes the form g
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This %s the dispersion relation of Langmuir waves given in Eq. (9.32) for the one<i
mensional case, ¥, = 3, if we replace one of the @? in the denominator of the third
u""mbYff’,f,-'l?lislm'mtumstou.lttobelhellu:rm.alcc:)rrection to the Langmuir waves
and the dispersion relation, including the damping term, becomes
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The collisionless damping decrement can now be determined by inecctis p;:

into the imaginary correction of Eq i derivative 500
. . (10.30) and calculating the denva
z:::zcimn. Under the assumption that the damping is weak, # < @1 it
pect that the Imaginary part of & (k, @) is also small.

10.2.2 Damping Rate

the d::;n this condition it 15 possible to develop a simple prescription (© deter!
& rate from the dispersion relation. Let us split -
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o these equations is the usual dispersion relation depending only on real

.. But the second equation is a very useful expression for calculas
M,,w of any weakly damped wave, In the following we wij| make e:::]:::i u!:ce

| s expression. Applying it to the Langmuir wave dispersion relation Eq. (10.30)
sells
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u @ expression for the Landau damping of high-frequency Langmui i

: : [ hugh gmuir waves in a
ml;:mnlcss unmagnetised plasma. This damping is not caused by particle collisions
iisentirely due to particle decorrelation effects,
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My With the waye, Bioe 3?::1:: are redistributed in phase s;;al;: m"guu 01;
o i0d thus has ne et rectivity does not affect most of the
o BT 10 Ul ect on the time symmetry of the Vlasov equation.
b Pigating mrs:md the physics of Landau damping, let us consider a plasma
%1 dlstrﬂmtion funss A plasma in thermal equilibrium with a Maxwellian equi-
by Pt 5 - O™ fo(v). The situation is depicted in the lefi-hand part of
Q;: A atl’IeNSIuonv=vPh=m/kminWWimmc Wivc,s‘mcc
e TO0ZESE same speed as the wave in the plasma. Clearly, these particies
Q‘mm- S wil] Cither beWavc electric field. Depending on the direction of this ﬁ"‘_l'
"ku::x Slightly g, . ccelerated or decelerated. On the other hand, any W";I
aster or slower than the wave will experience a different kind




Damplng / Acce
ler,

(‘“-’0 e mﬂ

O"O—. ((ll',k" v
Mk my Oh\k'.o\
Ampiification / p My

e (w, k) v '::“
my  hk 0“-0'*;),

0 vaw/k v mY
Figure 103: The mechanism of Landau damping. Left: The wave re

w/k. Al electrons left of it are slow, those at the right are fuster m.m‘::"‘h».
in interaction, the faster electrons will give up energy to the wave while (he 'MAW
encegy from the wave. Right: Thi is shown in analogy of photon.cl e “;illh
wave of frequency @ and wave number & his energy Ae and momentum hj Whe

We can investigate this kind of interaction by exploiting the simple analogy of
collision between two purticles (right-hand side of Fig, 10.3), taking the waye fi .'
unchasged particle of energy A@ and momentum Ak, In a collision between the
particles (clectron and wave), the one with the higher momentum will alwayy spood
up the lower momentum particle, thereby losing its own energy.

This kind of interaction is of elastic nature and thus dissipationless. It cxly
resembles the process of Landau damping as an elastic interaction between putics
and waves with no preferred direction, Fast electrons will speed up the waves, while
slow electrons are pushed by the wave and gain encrgy. But why then an effoctive
damping of the wave? The reason is the asymmetry of the Maxwellian distobutior
function with respect to the plasma wave phase velocity, There are more Jow than bgh
velocity particles, and, hence, the wave loses more momentum and energy in the M

action with low momentum particles than it gains back from interaction with bighet
momentum particles. Clearly, during this process the distribution function m;:‘“
essarily become slightly distorted, as shown in Fig. 10.4. The retarded and ice
S;ri';clcl right and left of the resonance are attracted by the resonance
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We can make this argument a little more quantitative by estimati with ¥
in encrgy which the electron distribution experiences during the in
Langmuir wave. This change is given by the integral
(104
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where (Av) is the electron velocity change averaged over one unl’““:/*'
It is convenient to transform 1o & system moving with phase We?
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; Attraction of particles by a resonance. The energy exg
pue 194 the slower electrons thus ‘attracting’ them from mh:m"m';"' the faser
L]

u o0 the distribution function around the resonance. This also causes some Heeping of
4o datbution function on both sides outside the resonance. Resonant wayes thves cause .L
o on o thermal distribution function in velocity space, which in peinciple tmpies o
snre of free thermal energy which may become available for other processes

{«v-@/k. The change in velocity, (Av), is independent of such  transformation,
wdthe above integral becomes
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Wenow expand the distribution function around v = 0 to obtain
W, = m._[ av (v+) av) [f (3)+ g—{ mﬂ} . (1040
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.: hb‘ shown by using the electron equation of motion in an oscillating electric
kld of amplitude £,
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by
thn” velocity variation, (Av), is an odd function of v (calculate w?l).z(:))
e lh:’f"qwion of motion and substitute x(r) = xo +V1 back wm&mi
% gy o) 0% PrOduct terms in the abave integral oaly the two e ¢
e ‘”(Av)s i ; integrating &V OV
eiflyg Survive the integration from —ee to +eo. Aftet
% period, one finds
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The first term in the brackets can be negloct‘cd Pccguse itaddsonly a 5 .
which is independent of the shape of the distribution function: mall COntribyg
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After integration and replacing @ == @p,, We get
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Hence, in the average over one wave oscillation period the electrons gain energy, if
the derivative of the equilibrium distribution function in the vicinity of the resonunce
is negative, This energy is provided by the wave and leads to acceleration of the smal
number of resonant particles with velocities just below the wave phase speed. In eqsi-
librium the energy transferred to the electrons per unit time equals the loss of wave

energy:
(1047)

At dt
The second part of this equation results from the definition of the average “:em

Wy = ey8E(r) - 8E*(t)/2, where, after multiplication of the wave electric

its conjugate complex part, only twice the real part of the exponent SUVIVeS: 0/
Eq. (10.46) for the gain in electron energy and Eq. (10.43) for the amp!lt“d‘ .
one finds that the wave energy, W, appears on both sides of the equatio®

another expression for the Landau damping;

= 291Wi(0) exp(—211).
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Inserting the Maxwellian distribution and remembering that it i 7
unperturbed density, g, one just recovers Eq. (10.37).
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10.3.1 lon-
sed the contribution of ion inertia. Fi fos

5o far we have Suppres 2 . From the derivation of

bcdinspcrﬁon relation, €(k, p) =0, it has become clear that the contributions of dif-

gt species (electrons, ions, etc.) can be accounted for by adding a singular integral

werthe distribution function of the corresponding specics, of the same kind as in Eq.

i, ek, p). Hence, including the ion contribution requires solving the follow-

g dispersion relation:
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Acoustic Waves

(10.49)
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& igh frequencies corresponding to electron plasma oscillations we can use the
Hzexpansion for the two integrals as before and find for the real part,
%+ 0

Is (10.50)
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o g munbetwee“ the simple Langmuir dispersion relation

gy, Oion m::' 2 P}“mﬂ frequency is corrected by a term ©

Mo impq $ ratio. The correction of the Debye length ums
Ttant only for extremely high ion temperatures.
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